<u>Question 6</u>

A nonempty set *S* with a binary operation * is called a semigroup if

- i) $a, b \in S$, then $a * b \in S$
- ii) a * (b * c) = (a * b) * c for all $a, b, c \in S$

Furthermore, a nonempty set T with a ternary operation \circ is called a ternary semigroup if

- i) $a, b, c \in T$, then $a \circ b \circ c \in T$
- ii) $(a \circ b \circ c) \circ d \circ e = a \circ (b \circ c \circ d) \circ e = a \circ b \circ (c \circ d \circ e)$ for all $a, b, c, d, e \in T$

Prove that *S* with the given operation * is also a ternary semigroup.

(10 marks)

Solution:

Assume $(S, *)$ is a semigroup. Therefore S is closed and associative.	
i) Let $a, b, c \in S$, therefore	
a * b * c = b' * c since <i>S</i> is closed; i.e. $a * b = b'$	
$\in S$ again since S is closed	
ii) $(a * b * c) * d * e = (a * b') * d * e$	since S is closed and by letting $b' = b * c$
= a * (b' * d) * e	since <i>S</i> is associative
= a * (b * c * d) * e	by replacing $b' = b * c$
= a * (b * c') * e	since <i>S</i> is closed and
	by letting
	c' = c * d
= a * b * (c' * e)	since <i>S</i> is associative
= a * b * (c * d * e)	by replacing $c' = c * d$